Identificación molecular de posibles híbridos

Ninguno de los genotipos (total: 1723) muestreados es un híbrido entre Yungay y la papas nativas.

<u>Baja probabilidad</u> de que un híbrido entre papa comercial y nativa se mantenga dentro del germoplasma de papas nativas.

LAC-Biosaf

Evaluación y monitoreo del flujo de genes en la diversidad de cultivos

Griselda Arrieta, Costa Rica Luisa Fory, Colombia

> 7 de junio de 2012 Cartagena Colombia

Diversidad de especies silvestre

Introgresión de genes exóticos

Estructura genética

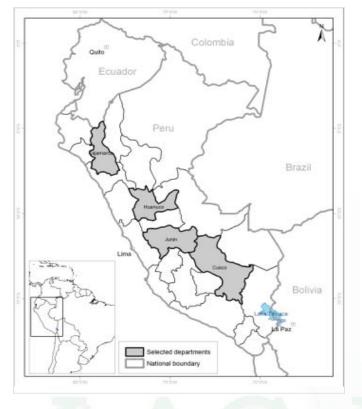
Dispersión de semilla Flujo de genes:

movimiento de genes entre organismos

Persistencia de poblaciones híbridas

Dormancia de semilla

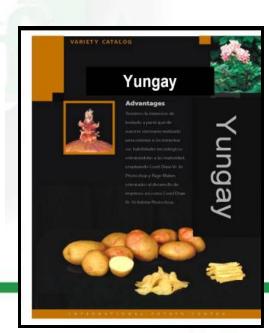
Papa, Arroz, Maíz, Yuca


		1 Arra
PAPA (Solanum tube	rosum): Perú	
Búsqueda de evidencias de introgresión de genes exóticos en variedades nativas y parientes silvestres de la papa	Juan Montenegro Rosario Herrera Marc Ghislain	Centro Internacional de la Papa (CIP)
Generación de línea base sobre la habilidad de persistir de poblaciones híbridas luego del evento de flujo de genes de cultivares de papa mejorada hacia cultivares nativos y parientes silvestres.	Stef de Haan María Scurrah	Centro Internacional de la Papa (CIP)
ARROZ (Oryza sativa): Costa Rica	
Estudio de flujo de genes del arroz cultivado (<i>O. sativa</i>) al arroz maleza (<i>O. sativa</i>) y silvestre (<i>O. glumaepatula</i>).	Griselda Arrieta Eric Fuchs Bernal Valverde	CIBCM-Universidad de Costa Rica, Universidad de Copenhague
Dormancia de semillas de arroz	Adriana Murillo Álvaro Azofeifa Andrés Monge	CIGRAS-Universidad de Costa Rica.
Monitoreo biológico de aves acuáticas en arrozales de la zona norte de Costa Rica.	Paola Gastezzi Daniel Martínez Johnny Villareal	Consultores
Fortalecimiento de capacidad técnica para estimación de riesgo potencial de cultivos de arroz GM	Sergio Bermúdez	Universidad de Costa Rica.

Objetivos Papa

1. Estudiar la ocurrencia y frecuencia de introgresión no voluntaria de variedades comerciales a nativas y, en caso de detectarla hacia especies silvestres sexualmente compatibles.

2. Determinar la capacidad de sobrevivencia de poblaciones híbridas específicas producto de flujo de genes entre papa comercial y nativa.

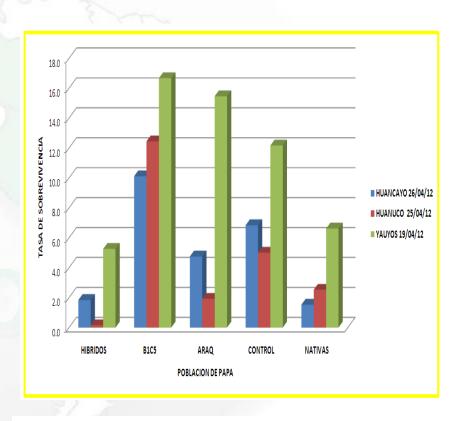


Recolecta de genotipos

- Crecimiento simpátrico (mismo sitio): papa comercial y papa nativa
- Yungay: grupo Tuberosum, fértil, cultivada x varios años
- Muestreo en tres zonas: Junín, Cuzco, Huánuco.

Marcadores moleculares

- > Yungay: perfil con microsatélites
- Detectar loci específicos de papa Yungay en genotipos muestreados



Dinámica poblacional de materiales en meseta central, este y oeste de los Andes

- ➤ Híbridos: rangos diferenciales de adaptabilidad en función del ambiente
- ➤ Mayor tasa de sobrevivencia:
- Líneas mejoradas
- Variedades comerciales
- Grupo semi-silvestre "Araq"

Localidad de Yauyos: todos los materiales muestran altas tasa de sobrevivencia

Hibridos: cultivadas x silvestres y cultivados x nativos

B1C5: líneas experimentales mej. convencional resistencia a

Phytophthora sp

"Araq": Papa semi silvestre

Control: variedades comerciales

Nativas: variedades cultivadas tradicionalmente, bayas

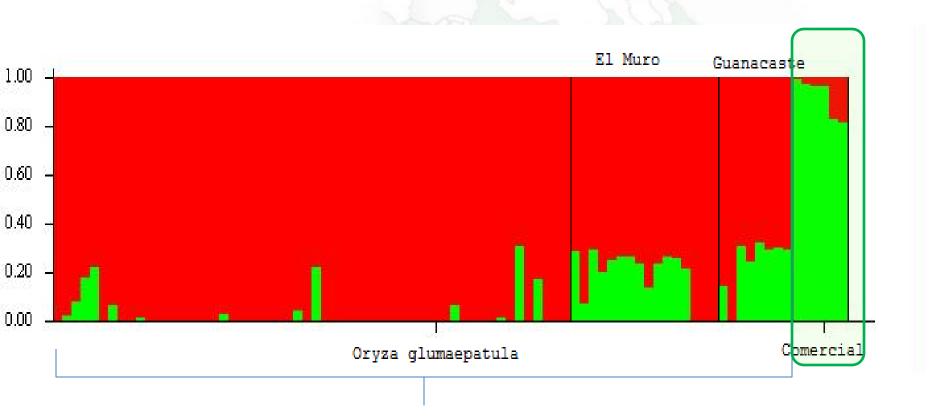
recolectadas en Huánuco

Conclusiones

- ✓ Establecimiento de híbridos papa comercial y nativa es poco probable.
- ✓ Selección y mantenimiento del germoplasma nativo por parte de los agricultores alto-andinos contribuye con el bajo establecimiento.
- ✓ Resistencia a enfermedades no favorece la sobrevivencia de materiales.

Objetivos Arroz (Costa Rica)

- 1- Estudiar la diversidad y el flujo de genes al arroz silvestre (*O. glumaepatula*).
- 2- Determinar la capacidad de sobrevivencia de híbridos con arroz maleza (rojo) x cultivado.
- 3- Estudiar la dormancia en semillas de arroz cultivado.
- 4- Realizar un monitoreo biológico de las aves acuáticas presentes en los arrozales y humedales de la zona norte del país.
- 5- Desarrollar una propuesta para estimar el riesgo/beneficio mediante un método de valoración


Flujo de genes a Oryza glumaepatula

- Mayor diversidad genética en *Oryza glumaepatula* que el arroz cultivado *O. sativa*.
- Clara diferenciación genética entre ambas especies (Φ_{ST} =0.161).
- Las poblaciones tienen un nivel significativo de endogamia.
- Evidencia de flujo génico entre la misma especie (intraespecífico).

Flujo génico entre *Oryza glumaepatula* y *Oryza sativa* en Costa Rica

Conclusiones

✓ Alto flujo génico entre poblaciones de la especie silvestre.

- ✓ Evidencia de flujo entre *O. glumaepatula* y *O. sativa.*
- ✓ Profundizar en el estudio de la introgresión de los genes comerciales en la silvestre.
- ✓ Zonas de exclusión de siembra de arroz GM en las localidades donde crece la especie silvestre.

Persistencia de híbridos arroz maleza-cultivado

Híbridos artificiales

- Primera generación de híbridos resistentes o susceptibles a herbicida tiene mayor altura y brotes ejes que los parentales.
- Híbridos recolectados en campo, resistentes y susceptibles, en condiciones de competencia.
- > Híbridos resistentes producen más ejes que los susceptibles.
- Pueden establecerse en los arrozales en presencia o ausencia del herbicida

Dormancia de semillas de arroz

- Semilla_recién_cosechada_de las variedades: CR-5272 y Palmar 18
- Enterramientos: 0, 15 y 30 cm de profundidad
- Germinación, muerte y dormancia

Resultados

Superficie (0 cm):
 Germinación o muerte de la semilla

Dormancia: 0,006 %

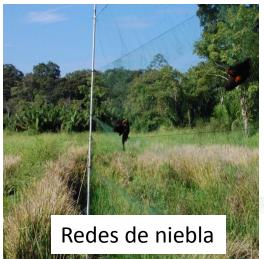
- 15 cm: 1,2 % dormancia

- 30 cm: 2,1 % dormancia

Máximo %:

Palmar 18 en con dormancia de 6,1 %

Conclusiones

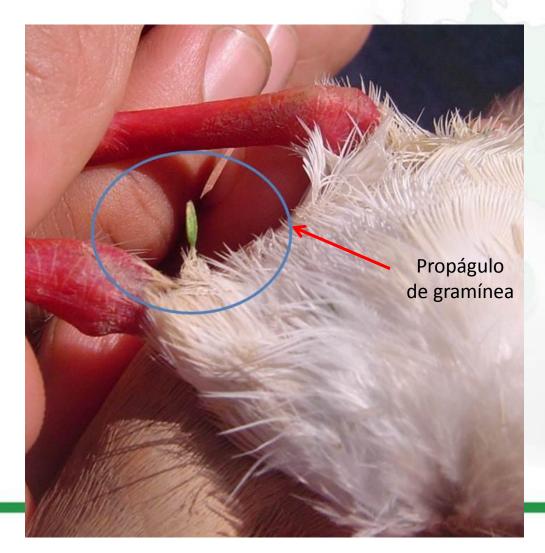


✓ Posibilidad de flujo de genes y establecimiento de híbridos arroz maleza x arroz comercial.

- ✓ Requiere de la implementación de manejo integral para evitar la persistencia.
- ✓ Bajo porcentaje de semilla con dormancia y la mortalidad aumenta al enterrarse.

✓ A mayor profundidad: mayor porcentaje de dormancia.

Monitoreo de aves acuáticas en arrozales de la zona norte


- Inventario de aves: Medio Queso y Caño Negro
- > 174 especies de aves.
- 42 especies son migratorias latitudinales
- 129 especies son residentes.
- Hábitos acuáticos y dependientes de humedales.
- Entre las acuáticas: 53 especies y 119 especies son de hábitos mixtos (terrestres y semi acuáticos).

Dispersión de semilla: hasta el momento, una paloma (*Leptotila plumbeiceps*), mostró tener rastros de un propágulo de gramínea

Paloma coronigris

Conclusiones

➤ Se encontraron especies de aves poco comunes, y algunas vulnerables en el país que habitan el Humedal de Medio Queso.

> Aves podrían dispersar semillas de gramíneas.

Acciones de conservación para dar alguna categoría de protección al humedal de Medio Queso.

Desarrollo de una propuesta para estimar el riesgo/beneficio mediante un método de valoración

[MPORTANCIA RELATIVA SUBCOMPONENTES (COMPONENTE FLUJO DE GENES) PARA LA TOMA DE DECISIONES RIESGO-BENEFICIO SOCIOAMBIENTAI

En las siguientes comparaciones indique su preferencia. Marque con una X en cuanto al grado de importancia para la toma de decisiones.

Ejemplo. Si Hibridación es extremadamente importante con respecto a estructura genética marque la casilla de la izquierda, si es a la inversa marque la de la derecha.

CRITERIO	Extremada mente importante	Mucho Mas importante	Bastante más importante	Modera mente más importante	IGUAL	Modera Mente más importante	Bastante más importante	Mucho Mas importante	Extremada mente importante	CRITERIO
Hibridación										Estructura genética
Hibridación Hibridación										Introgresión Dispersión
Hibridación										semilla dormancia
Estructura genética										Introgresión
Estructura genética										Dispersión semilla
Estructura genética										dormancia
Introgresión										Dispersión semilla
Introgresión Dispersión										dormancia dormancia
Introgresión Dispersión semilla										

Determinar el peso de los subcomponentes

IMPORTANCIA SUBCOMPONENTES

	Subcomp 1	Subcomp 2	Subcomp 3	Subcomp 4	Subcomp 5	VECTOR PROPIO
Subcomp 1	1	1	1	1	5	0,2204
Subcomp 2	1	1	1	5	5	0,3467
Subcomp 3	1	1	1	1	5	0,2204
Subcomp 4	1	1/5	1	1	5	0,1684
Subcomp 5	1/5	1/5	1/5	1/5	1	0,0441
CR	7,58%	< 10%				1,0000

YUC	CA	
Flujo de genes entre clones cultivados de yuca y sus parientes silvestres del género <i>Manihot,</i> en Colombia	Luisa Fory	CIAT- Colombia
Estudio de flujo de genes en <i>Manihot</i> Brasil	Carlos Ledo	EMBRAPA -Brasil
MA	IZ	
Línea de base molecular de la estructura poblacional de razas locales de maíz con cultivares híbridos de maíz amarillo duro	César Bonilla	UNALM- Perú
Estudio sobre flujo de genes en maíz en condiciones de la costa Caribe para Colombia	Victor Nuñez	CORPOICA-Colombia

Objetivos - Yuca

- 1. Conocer la distribución de especies silvestres (Colombia y Brasil).
- 2. Caracterizar molecularmente a través de marcadores SSR y SNPs las especies encontradas y determinar la compatibilidad genética de algunas especies silvestres con la especie cultivada.
- 3. Evaluar el flujo de genes mediante marcadores SSR y SNPs utilizando clones clones comerciales e identificación de polinizadores.
- 4. Evaluar la supervivencia de plantas voluntarias durante todo el ciclo del cultivo de yuca.

Objetivo 1: Distribución de especies silvestres (Colombia y Brasil).

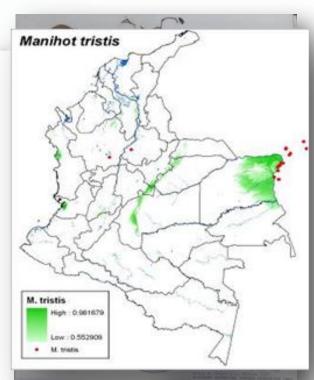
75 especies Recopilación de registros de herbarios.

3500 registros

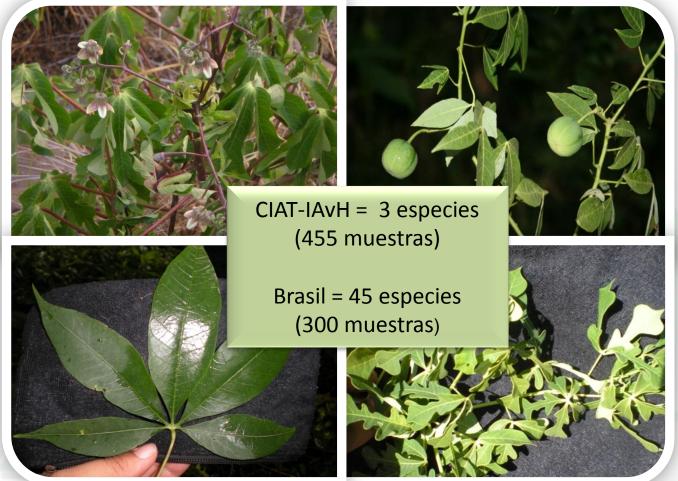
Herramienta (EcoMap)
1470 registros, 405 imágenes, mapas
de distribución geográfica,
distribución potencial y zonas de
coexistencia

EcoMap (CIAT-IAvH)

http://spatanweb.ciat.cgiar.org:8008/biosafety/web/http://spatanweb.ciat.cgiar.org/ManihotEcoMap/


1470 registros

LAC Biosafety



🛣 Ini	cio 🏻 🎑 Perfil	₫ Contraseña	📭 Salir avel	asquez		
* Lis	ta Herbario	s				+ Nuevo 👂 Busear
Id +	Numero +	Familia \$	Genero \$	Especie \$	Pais +	Acciones
1	003513	EUPHORBIACEAE	Manihot	Manihot brachyloba Mull. Arg.	Colombia	✓ Editar Ver Foto
480	151126	EUPHORBIACEAE	Manihot	Manihot crotalariiformis Pohl.	Brasil	∠ Editar Ver Foto
387	68566	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	/ Editar Ver Foto
388	68745	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	✓ Editar Ver Foto
389	68747	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	✓ Editar Ver Foto
390	68749	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	∠ Editar Ver Foto
391	68751	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	∠ Editar Ver Foto
392	68752	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	∠ Editar Ver Foto
393	69070	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	/ Editar Ver Foto
394	69072	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	✓ Editar Ver Foto
395	70401	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	✓ Editar Ver Foto
396	70402	EUPHORBIACEAE	Manihot	Manihot brachyloba Mull. Arg.	Colombia	✓ Editar Ver Foto
39 <i>7</i>	70403	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	✓ Editar Ver Foto
398	70405	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	∠ Editar Ver Foto
399	70406	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	∠ Editar Ver Foto
400	70407	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	∠ Editar Ver Foto
401	70408	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	✓ Editar Ver Foto
402	70409	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	
403	70445	EUPHORBIACEAE	Manihot	Manihot esculenta Crantz.	Colombia	/ Editar Ver Foto

Consultas de registros, mapas de distribución, distribución potencial, coexistencia

- 1. Especie
- 2. País
- 3. Departamento
- 4. Nombre común
- 5. Herbario

8 Nuevas especies

Total =755

M. acuminatissima
M. aesculifolia
M. alutaceae
M. anomala
M. atenuata
M. brachiandra
M. caerulescens
M. carthaginensis
M. cecropiefolia

M. compositifolia
M. diamantinensi
M. dichotoma
M. epruinosa
M. flabelifolia
M. flemingiana
M. gabrielensis
M. glaziovii
M. geniphoides

M. gracilis
M. irwinii
M. jacobinensis
M. jolyana
M. longipetiolata
M.maracasensis
M. michaelis
M .mossamedensis
M. nana

M. nogueira	M. reptans
M. pavifolia	M. sagittato-partita
M. peltata	M. salicifolia
M. pentafila	M. sparcifolia
M. pilosa	M. tomentosa
M. pseudoglaziovii	M. tripartita
M. purpureo-costata	M. tristis
M. pusilla	M. Violaceae
M. reniformes	M. brachyloba ***

A remarkable new *Manihot* (Euphorbiaceae) from the coastal sand plains of Sergipe, Brazil

Phytotaxa 32: 57–60 (2011) www.mapress.com/phytotaxa/ Copyright © 2011 Magnolia Press

Manihot sp.

M. paludosa

8 Nuevas especies

Objetivo 2: Caracterizar molecularmente a través de marcadores SSR y SNPs las especies encontradas



CIAT-IAvH
693 accesiones 10 SSR

Determinación de la compatibilidad genética de especies silvestres con la especie cultivada

Madre X		Padre	# Flores	% Flores	% Frutos	% Semillas
			Polinizadas	Fertilizadas	Establecidos	Producidas
Silvestres (13 esp.)	X	M. esculenta (25 var.)	851	35,96	9,75	5,95
M. esculenta (14 var.)	X	Silvestres (7 esp.)	147	59,18	18,37	6,80
Т	OTA	AL .	998	39,38	11,02	6,08

Se logró obtener bajo porcentaje de semillas en cruzamientos dirigidos entre especies silvestres y cultivares comerciales de yuca.

El cruzamiento ocurre en ambas direcciones; puede depender de las especies utilizadas como parentales, calidad y cantidad de polen.

Objetivo 3: Evaluar el flujo de genes utilizando tres clones de yuca cultivada mediante marcadores SSR y SNPs.

HMC1 = Alta floración

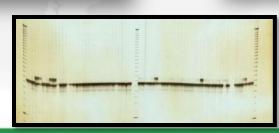
Clon Waxy : Mutación espontánea, bajo contenido de amilosa (Ceballos et al., 2007).

Clon Androesteril : Buena floración, no tiene polen viable. Buena calidad de almidón

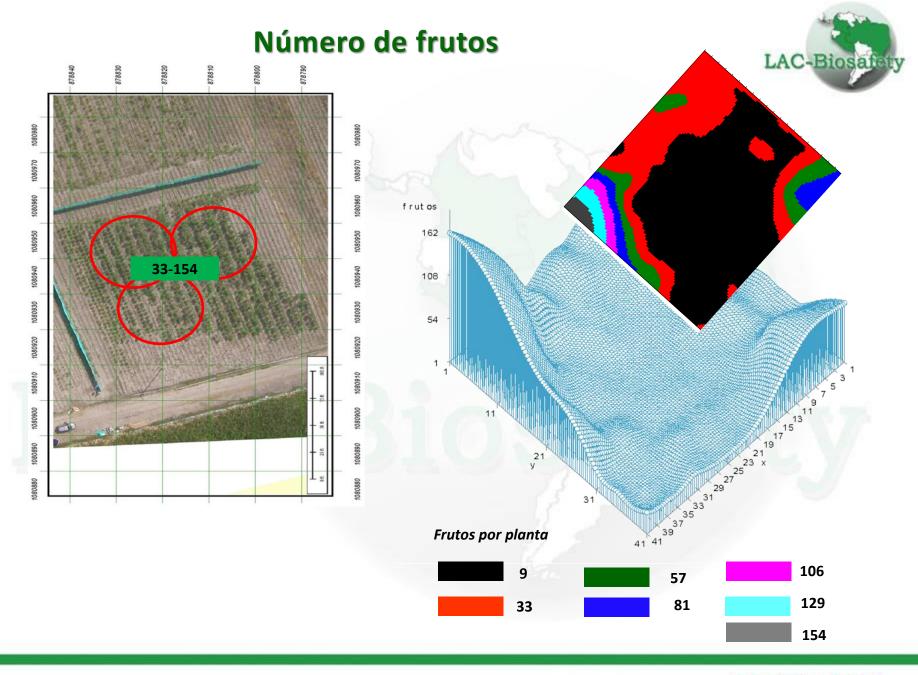
No Waxy

	26-28	43-44
aa	+	-
AA	-	+
Aa	+	+

Principal polinizador Apis mellifera



Tasa de hibridación SNPs, SSR: 7- 15 %;



SSR SNPs

SSR

Objetivo 4: Evaluar la persistencia de plantas voluntarias durante todo el ciclo del cultivo de yuca

CIAT
Se estableció el protocolo

Brasil adoptó el protocolo 4 Ha (Nordeste y Centro Sur Brasil)

Identificamos lotes de tres zona geográficas

Identificación de voluntarios A.L y D.L

Levantamiento topográfico

CIAT- EMBRAPA

Bajo nivel de presencia de plantas voluntarias en lotes comerciales.

22 ha Tres zonas geográficas 45088 plantas 2 voluntarias

Conclusiones

- Herramienta EcoMap.
- Se identificaron marcadores moleculares específicos.
- Existe baja compatibilidad entre variedades comerciales y especies silvestres.
- Menos del 1 % de plantas originadas de semilla sexual fueron incorporados en lotes comerciales (desarrollo de metodología).
- Tasas de cruzamiento menores al 15 % fueron encontradas en el clon androestéril y el clon libre de almidón.
- En la zona de Cerrados se debe restringir la siembra de transgénicos por contener la mayor diversidad de especies silvestres. En Centro sur existen pocas especies silvestres y se siembra el 90% del cultivo yuca para industria.

YUC	CA	
Flujo de genes entre clones cultivados de yuca y sus parientes silvestres del género <i>Manihot,</i> en Colombia	Luisa Fory	CIAT- Colombia
Estudio de flujo de genes en <i>Manihot</i> Brasil	Carlos Ledo	EMBRAPA-Brasil
MA	IZ	
Línea de base molecular de la estructura poblacional de razas locales de maíz con cultivares híbridos de maíz amarillo duro	César Bonilla	UNALM- Perú
Estudio sobre flujo de genes en maíz en condiciones de la costa Caribe para Colombia	Victor Nuñez	CORPOICA- Colombia

Objetivo 1: Conocimiento de línea base- Maíz

Visitas directas a las parcelas y entrevista con los agricultores.

Épocas de siembra, distancias de siembra, distribución de cultivos.

Colombia: Región Caribe (7 departamentos)

Perú: Lambayeque Ica Lima

Documentó el sistema de producción, comercialización movimiento de la semilla.

Colombia: Costa Caribe

- Siembras a lo largo del año
- Semilla se compra en almacenes. Existe fuentes informales
- La distancia entre lotes 3 a 150 metros.
- Los pequeños productores: Variedad ICA V-109, Corpoica 114, SYNKO.
- Los grandes productores: semilla certificada

184
Agricultores
(2-10 ha)

Perú:

Agricultores

Sólo maíz amarillo duro. Siembran su propia semilla.

Siembran simultáneamente parcelas cercanas Maíz amarillo duro – criollo (1.5 - 200 m). Algunos evitan la coincidencia de floración, otros seleccionan los maíces cruzados para su autoconsumo y no para semilla.

Arroz/ Maíz amarillo duro Maíz criollo (Mochero y/o Alazán)

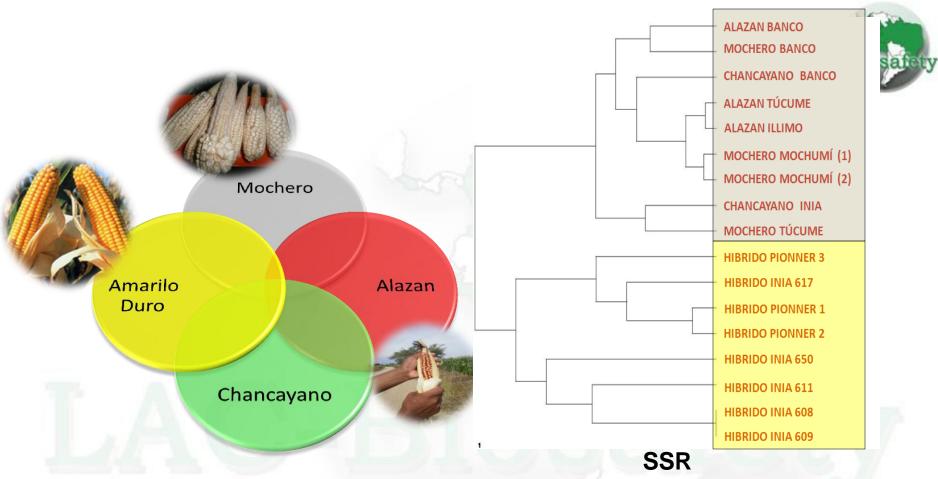
Una pérdida de los tipos raciales puede depender del agricultor (precio)

Objetivo 2: Estudio de diversidad de los grupos raciales en la zona de interés

Perú:

Razas de maíz:

Chancayano, Alazán y Mochero. (Lambayeque)


Controles Banco de germoplasma de UNALM

8 híbridos de maíz amarillo duro:

312 muestras , 42 SSR (22 CIAT), 6 combinaciones AFLPs

Maíz amarillo duro (USA, Cuba) desde hace más de 50 años ha causado una pérdida en la diversidad racial?

LAC-Biosaf

Han pasado más de 50 años de simpatría y las razas locales mantiene una alta diversidad genética.

La alta diversidad en los maíces criollos podría deberse a la manera como se mueve la semilla desde la cosecha, comercialización en mercados locales, mayoristas y adquisición de la semilla para la próxima siembra.

Objetivo 3: Evaluación de flujo de genes mediante genes específicos y morfológicos LAC-Biosafety

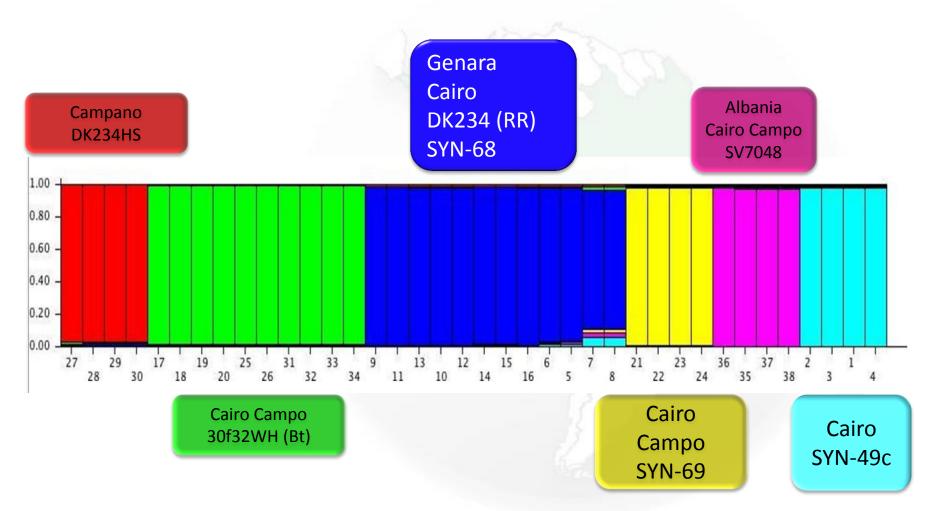
Cosecha del ensayo Julio 2012

Objetivo 4: Comprobación de presencia de eventos de maíz GM en - Región Caribe Colombiana

Resolución 2894, <u>www.ica.gov.co</u>. 2010

Convencional blanco

Convencional amarillo


Evidencia de transferencia de información genética

Promotor 35S CRY 1F CP4-EPSPS

MAIZ

híbridos comerciales se localizan en diferentes fincas.

Conclusiones

- Se ha determinado alta diversidad genética de los maíces criollos en simpatria por más de 50 años con el maíz amarillo
- Base de datos georreferenciados de productores de maíz (manejo, uso, comercialización y adquisición de semilla de maíces raciales y maíz amarillo duro)
- Se ha evidenciado híbridos entre maíces amarillos y criollos. No se utilizan como semilla
- Se identificaron transgenes en maíces convencionales comerciales en lotes que no cumplen las especificaciones del ICA- Colombia. Resolución 2894, www.ica.gov.co. 2010)

Adecuado movimiento transfronterizo de organismos vivos modificados (OVM) resultantes de la biotecnología moderna que puedan tener efectos adversos para la conservación y la utilización sostenible de la diversidad biológica

EVALUACIÓN DEL RIESGO: posibles efectos adversos de OVM en la conservación y utilización sostenible de la diversidad biológica y en el probable medio receptor, teniendo también en cuenta los riesgos para la salud humana

PROTOCOLO DE
CARTAGENA SOBRE
SEGURIDAD DE
LA BIOTECNOLOGÍA
DEL CONVENIO
SOBRE LA
DIVERSIDAD
BIOLÓGICA

LAC-Biosafety