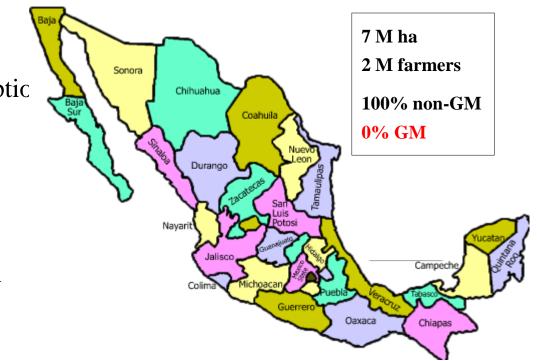
hypothetical case study: Insect-resistant, herbicide-tolerant maize for unrestricted release in Mexico

Mark Tepfer

Institut Jean-Pierre Bourgin, INRA-Versailles


Station de pathologie Végétale, INRA-Montfavet

cial thanks to Sol Ortiz Garcià, Cl

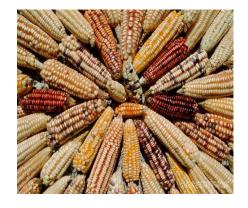
Lima, Peru, 20-22 January 2014

Maize production in Mexico

- Production scale:
- <u>Micro</u>:
- Landraces for self consumptic or local trade
- <u>Small to medium:</u>
- on land < 5 ha
- for trade
- Improved landraces & seed
- Technology often used
- <u>Macro</u>:
- 23% of land > 5 ha
- Improved seed for market demands
- Technology-driven production

77%

Maize consumption worldwide


White and yellow maize are most consumed

Human consumption

- In Africa & Central America: white maize
- in South America: yellow maize Uses:
- <u>Staple food</u>: maize meal (eg, corn bread, tortillas), maize grain (e.g. pozole).
- <u>Other</u>: corn oil, maize starch, high-fructose syrup, ethanol

Animal consumption

• Worldwide widespread use of yellow maize

Importance of maize in Mexico in terms of food, economy & socio-cultural traditions

Exhibition on history of corn (Museum of Popular Culture, Mexico)

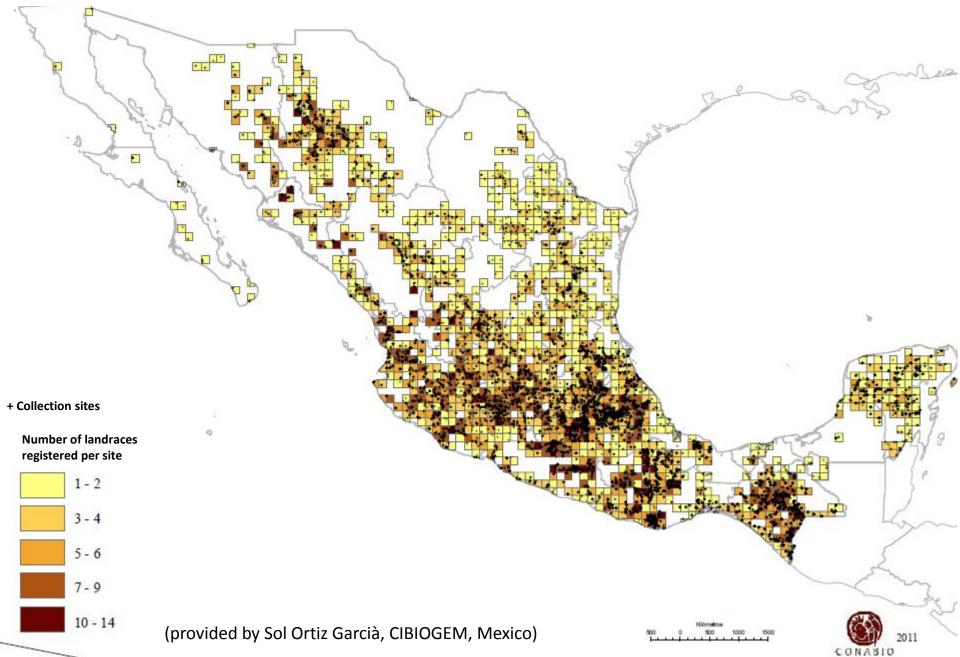
elotes (steamed corn cobs)

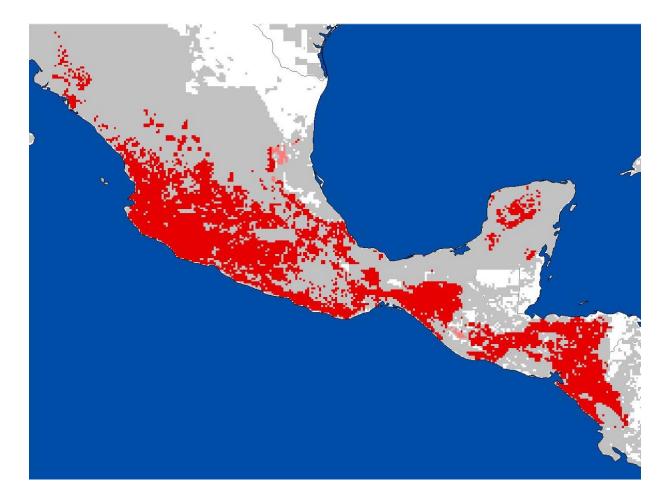
tortilla chips

Xilonen (Aztecs' name for young fresh maize)

Centre of origin

= the geographical area where process of domestication took place (~10,000 years ago)*


- Mexico & Gautemala = centre of origin of maize
- Ancestor: teosinte (Zea mays spp. mexicana; Zea mays spp. parviglumis)
 - Classification by Iltis & Doebley (1980) and Doebley & Iltis (1980)
- Maize: Zea mays ssp. mays
 - ~ 59 landraces in Mexico
 - cross-compatible with teosinte


(<1% Z. mays ssp. mexicana; > 50% Z. mays ssp. parviglumis)

*American Society of Plant Biologists (2008, June 27).

Presence of landraces in Mexico (1940-2010)

Likelihood of maize-teosinte hybridisation

High likelihood of hybridisation of crop with: Zea diploperennis, Z. luxurians, Z. nicaraguensis, Z.mays subsp. huetenangensis, Z. mays subsp. Mexicana, Z. subsp parviglumis

Only crop or only crop wild relatives (i.e, no overlap)

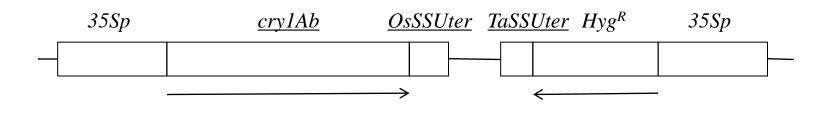
Presence of teosinte in Mexico (1940-2010) (Z.mays ssp parviglumis & mexicana)

Case-study: GM triple-stack maize

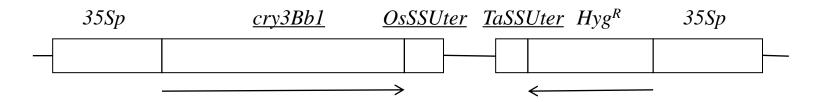
- Host organism:
- Zea mays spp. mays L. (maize)
- Traits:
- Event 1: resistance to lepidopteran pests (Cry1Ab)
- Event 2: resistance to coleopteran pests (Cry3Bb1)
- Event 3: tolerance to herbicide Round-up (CP4 EPSPS)
- ↓
- Events combined by traditional plant breeding \rightarrow triple stack

Host organism biology

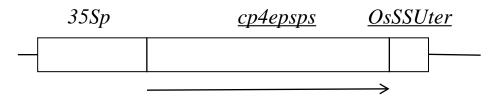
- Maize is predominantly a wind-pollinated, outcrossing species
- Maize is monoecious, with male and female reproductive organs being borne on the same plant as separate inflorescences.
- Pollen is borne on specialised male infloresences called tassels, whilst ovules are enclosed in ears with stigmas protruding as silks
- Maize is cross-compatible with teosinte


(<1% Z. mays ssp. mexicana; > 50% Z. mays ssp. parviglumis)

• Maize is not known to become weedy, due to traits such as lack of seed dormancy & poor competitiveness of seedlings.


Event 1: Cry1Ab Trait and modification

- Cry1Ab confers resistance to lepidopteran pests, such as the European corn borer (*Ostrinia nubilalis*) and species belonging to the genus *Sesamia*.
- Cry1Ab is a δ -endotoxin that selectively binds to receptors in the midgut of susceptible lepidopteran species
- The *cry1Ab* gene originates from *Bacillus thuringiensis* ssp. *kurstaki* and was introduced via *Agrobacterium*-mediated transformation.
- Southern blot analysis showed that only one copy of the gene construct was inserted


Event 2: Cry3Bb1 Trait and modification

- Cry3Bb1 confers resistance to coleopteran pests, i.e. corn rootworms (*Diabrotica*) & Colorado potato beetle
- Cry3Bb1 is a δ -endotoxin that selectively binds to receptors in the midgut of susceptible chrysomelid species
- The *cry3Bb1* gene originates from *Bacillus thuringiensis* ssp. *kumamotoensis* and was introduced via *Agrobacterium*-mediated transformation.
- Southern blot analysis showed that only one copy of the gene construct was inserted

Event 3: CP4 EPSPS Trait and modification

- CP4 EPSPS confers tolerance to glyphosate, the active ingredient of Roundup.
- The *cp4 epsps* gene produces a 5-<u>e</u>nolpyruvyl-3-phosphoshikimic acid <u>synthase</u> which will take over the intrinsic plant EPSPS function (involved in aromatic acid biosynthesis) blocked by glyphosate.
- The *epsps* gene originates from *Agrobacterium* strain CP4 and was introduced via *Agrobacterium*-mediated transformation.
- Southern blot analysis showed that only one copy of the gene construct was inserted

GM triple-stacked event Characterisation of proteins

- Cry1Ab, Cry3Bb1 and EPSPS do not show homology with toxic and allergenic proteins & are considered safe for human and animal consumption by Mexican authorities
- EPSPS and Cry proteins have a different activity spectrum.
- The Cry1Ab and Cry3Bb1 have a similar activity spectrum, but are active under different chemical conditions (midgut of Lepidoptera is alkaline (pH 10.5 -11), that of Coleoptera is neutral (pH 6.5-7))
- The *cry1Ab*, *cry3Bb1* & *epsps* genes are expressed in all tissues (leaves, roots, inflorescences & seeds), except in pollen

GM triple-stacked event Phenotypic characteristics

- The GM triple-stacked line was similar to the corresponding single events and other commercialised lines regarding:
- - vegetative vigour
- - yield (seed production)
- - flowering period
- - pollen production & viability,
- - seed dormancy
- - resistance to target pests
- - tolerance to glyphosate

Summary

- Purpose: cultivation of GM stacked event
- Receiving environment: Mexico
 - maize very important economically and culturally
 - landraces are grown
 - centre of origin of maize
 - sexually-compatible wild relatives (teosinte) are present
- Traits: resistance to pests (Lepidoptera & chrysomelids) & herbicide tolerance
 - Cry1Ab active against Lepidoptera
 - Cry3Bb1 active against Chrysomelidae
 - C4EPSPS confers tolerance to glyphosate
- GM stacked event:
 - phenotype & reproductive biology = non-GM maize
 - not shown to be more weedy
 - assessed as safe for human/animal consumption

Questions?